ST s e e

OHIO

. \ Bd
UNIVERSITY

LAnGie s
PO
S 32 =
83267
937

RADIATION AND SCATTERING
FROM LOADED MICROSTRIP ANTENNAS
OVER A WIDE BANDWIDTH

D.P. Forrai
E.H. Newman

The Ohio State University

ElectroScience Laboratory

Department of Electrical Engineering

Columbus, Ohio 43212

Technical Report No. 719493-1

Grant NSG-1613
September 1988

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Langley Research Center
Hampton, Virginia 23665

{(MASA-CR~

1812 14) RADIATIGN AM

FhCM LCADED MICEKCSTRIE ANTEMMAS CVEER A WIDE

EAMDWILTE

(Chic State Univ.)

7y
w
SCATIERING N89-13701
103 pCSCL 20N |
Onclas

G3/32 0183267 ..



NOTICES

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto.



50272-101
REPORT DOCUMENTATION 1. REPORT NO. . 2. 3. Recipients Accession No.
PAGE : " .
4, Titte and Subtitle ’ - 5. Report Date
RADIATION AND SCATTERING FROM LOADED MICROSTRIP ANTENNAS September 1988
OVER A WIDE BANDWIDTH €.
_;—Aut;l_or(_s.)_— 8. Performing Organization Rept. No
D.P. Forrai and E.H. Newman 719493-1
9. Performing Organizstion Name and Address 10. Project/Task/Work Unit No.

The Ohio State University

ElectroScience Laboratory 11. Contract(C) or Grant(G) No

1320 Kinnear Road ©
Columbus, Ohio 43212 © NSG-1613

12. Sponsoring Organization Name and Address 13. Type of Report 4 Per.od Covered
National Aeronautics and Space Administration Technical

Langley Research Center

Hampton, Virginia 23665 14

15. Supplementary Notes

This report was also submitted as a thesis by D.P. Forrai.

—

18. scareact {Limit 200 words)

The integral equation and moment method solution is developed for two different antennas in the presence of an infinite
grounded dielectric substrate. The first antenna is a rectangular microstrip patch antenna. This antenna will be analyzed
for excitation by an incident plane wave in free space and a vertical filament of uniform current in the dielectric. This
antenna can be loaded by a lumped impedance in a vertical filament of uniform current extending from the patch through
the dielectric to the ground plane. The radar cross section of the microstrip antenna is found from the plane wave excitation
and shows good agreement to measurement for both an unloaded and loaded antenna. The input impedance is found from
the current filament excitation. This is compared to the measured input impedance of a coaxially fed microstrip antenna and
shows good agreement for both unloaded and loaded antennas when the dielectric substrate is much less than a wavelength.
The second antenna antenna is a vertical thin wire monopole extending from the ground plane into or through the dielectric
substrate. The mutual impedance between two imbedded monopoles is compared to a previous calculation.

17. Document Ansilysis 8. Descriptars

LAy ARTER LT ) > . ot 1SS
;Ju’:\"?un>~ RA WA G 92 DA TTRA » v 2
3 N DEEATE : . TR
Wre e PBL Y AT s DARAN L AN e
::\ e '\“\?\f“b BAD NG INwLT, 4 g e
[EEVEVIRER [
N LR B S
b. identifiers/Open-Ended Terms .
MO Ty o o taeat
YN L TG
c. COSAT! Field/Group
18. Availability Statement 19. Security Class (This Report) 21. No of Pages
Unclassified 94
— .
20. Security Class (This Page) 22. Price
Unclassified '
(See ANSI-Z39.18) See Instructions on Reverse OPTIONAL FORM 272 (4-77)

(Formerly NTIS-35)

i Oepartment of Commerce



TABLE OF CONTENTS

LIST OF FIGURES

I

IL.

INTRODUCTION

THE INTEGRAL EQUATION AND MOMENT METHOD
SOLUTION FOR THE RECTANGULAR MICROSTRIP AN-

TENNA

2.1
2.2
2.3
2.4
2.5

2.6
2.7
2.8
2.9

Introduction . . . . ... .. ... ... . . . .
Derivation of the Integral Equation . . . . . .. ... ... ...
The General Moment Method Solution . . . . . ... ... ...
Evaluation of the Impedance Matrix . . ... ........ ..
Evaluation of the Voltage Vector . . . .. ... ... ... ...

2.5.1 Voltage Vector for an Incident Plane Wave in Region I .

2.5.2 Voltage Vector for a Vertical Uniform Filament of Cur-

rent in Region I1 . . ... ... e e e e e e e
Loading of a Rectangular Microstrip Patch . . . ... ... ..
Expansion and Weighting Functions Used in the MM Solution .
Computation of the Scattered Field and Input Impedance . .
Numerical Difficulties. . . . ... ... ..............
2.9.1 CPU Time Reduction for the Impedance Matrix Compu-

tation . . . . . e e e e e e e e e e e e e e

ii

PRECEDING PAGE BLANK NOT FILMED

A= TS T |

11
16
16

18
21
23
26

30



.

2.9.2 CPU Time for Wide Frequency Band Calculations . . . 30
2.9.3 Surface WavePoles . . . .. ................ 32
2.9.4 Oscillatory Behavior of the Voltage Vector . . . . . . .. 32
III. THE INTEGRAL EQUATION AND MOMENT METHOD
SOLUTION FOR A VERTICAL THIN WIRE THROUGH A
GROUNDED DIELECTRIC SUBSTRATE 35
3.1 Introduction . .. .. ... ... i 35
3.2 Derivation of the Integral Equation . . . . . ... ... ..... 35
3.3 The General Moment Method Solution . . . . . ... ... ... 38
3.4 Evaluation of the Impedance Matrix .. ... .......... 39
3.5 Evaluation for the Voltage Vector « o v v o e 49
3.6 Expansion and Weighting Functions . . . . ... ... ... .. 49
3.7 Numerical Difficulties. . . . .. ... ... ... ... ..., 56
IV. NUMERICAL RESULTS 87
4.1 Introduction . ... ... .. .. B 57
4.2 Plane Wave Scattering Results . . . . ... ........... 58
4.3 Input ImpedanceResults. . ... ... .. ............ 65
4.4 Mutual Impedance Between Vertical Thin Wires in a Grounded
Dielectric Substrate . . . ... . ... ... ... .. .. .. 84
V. SUMMARY 91
LIST OF REFERENCES 93
iv



[SL BN N

LIST OF FIGURES

The basic geometry of a microstrip patch antenna. . . . ... ... 6
The equivalent geometry of a microstrip patch antenna. . . . . . . 8
The MM expansion function, J3, at the dielectric interface. . . . . 12
Plane wave incidence on a microstrip patch. . . . . ... ... ... 17

A rectangular patch microstrip antenna excited by a vertical current
filament. . . . . e e 19
The equivalent circuit of a symmetric two port with an I; current
source at port 1 andaload Zy at port 2. . ... ... ....... 22
The k; and xy functions of Jne as even or odd functions with respect
to p and q. Note: eiseven,0isodd. . . . ... .. ... ...... 26
The kg and xy functions of the integrand (F(xz, ky) is even for both
Kz and ky) as even or odd function with respect to pn,gn,Pm and ¢qn. 27

The integrands for a % polarized mode voltage vector with respect

topandg. . ... ... ... e e e e e e 28
Contour of integration in the k plane. . . . . ... ... ... ... 33
A plot of the integral from 0 to z of f(z') verses = for an oscillatory

convergent integral. . . . . ... . ... ... .. 000, 33



12

13

14

15

16

17

18

19

20

21

22

Side view of a vertical, perfectly conducting thin wire extending
from a perfectly conducting ground plane through a dielectric layer.
It is excited by an arbitrary source (J*,M¢) that can be located in
either Region Tor II. . . . ... ... ... ... ...
Side view of the equivalent vertical current J° replacing the per-
fectly conducting thin wire on a dielectric coated ground plane. It
is in the presence electric and magnetic currents (J*,M¢). . . . . .
An example of a MM modal model for a vertical wire through a

grounded dielectric substrate. . . . . ... ... ... . 0L,

The rectangular microstrip antenna used for RCS calculation and

MEASUTEIMENt. . . . .« v v o it et e e e e e e e e e e e e e e

The rectangular microstrip antenna of Figure 15 with a feed port
for input impedance calculation. . . ... ... ... ........
The rectangular microstrip antenna of Figure 15 loaded for RCS
calculation and measurement. . . . .. .. ... ... 0L,
A comparison of the computed and measured theta polarized RCS
of a rectangular patch on a grounded dielectric substrate. . . . . .
A calculation of the real part of the input impedance for the micro-
strip antenna of Figure 16. . . . . . ... ... ... ..... ...
A calculation of the imaginary part of the input impedance for the
microstrip antenna of Figure 16. . . . .. ... ... ... .....
A comparison of the computed and measured theta polarized RCS
of a loaded rectangular patch on a grounded dielectric substrate. .
The rectangular microstrip antenna used for input impedance cal-

culation and measurement. . . . . . . .. ... 0.

vi

36

37

51

58

59

59

61

62

63

64

66



23

24

25

26

27

28

29

30

31

32

33

34

35

The rectangular microstrip antenna of Figure 22 loaded at the edge
for input impedance calculation and measurement. . . . . . .. ..
The rectangular microstrip antenna of Figure 22 loaded at the corner
for input impedance calculation and measurement. . . . . . . ...
A comparison of the computed and measured real part of the input
impedance for a microstrip antenna. . . . ... ... .. ... ...
A comparison of the computed and measured imagin#ry part of the
input imp?dance for a microstrip antenna. . . . . .. ... .. ...
A comparison of the computed and measured input impedance a-
round first resonance plotted on a Smith Chart.. . . . . .. .. ..
A comparison of the computed and measured input impedance a-
round second resonance plotted on a Smith Chart. . . . ... ...
A comparison of the computed and measured input impedance a-
round third resonance plotted on a Smith Chart. . . ... ... ..
A comparison of the computed and measured input impedance a-
round fourth resonance plotted on a Smith Chart. . .. ... ...
A comparison of the computed and measured input impedance a-
round fifth resonance plotted on a Smith Chart. ... .. e e
A comparison of the computed and measured real part of the input
impedance for an edge loaded microstrip antenna. . .. ... ...
A comparison of the computed and measured imaginary part of the
input impedance for an edge loaded microstrip antenna. . . . . . .
A comparison of thé computed and measured real part of the input
impedance for a corner loaded microstrip antenna. . . . ... ...
A comparison of the computed and measured imaginary part of the

input impedance for a corner loaded microstrip antenna. . . . . . .

vii

66

67

68

69

70

71

72

73

74

75

76

77

78



36

37

38

39

40

41

42

43

A comparison of the measured real part of the input impedance for
an unloaded and corner shorted microstrip antenna. . ... .. ..
A comparison of the measured imaginary part of the input imped-
ance for an unloaded and corner shorted microstrip antenna.

A comparison of the computed and measured real part of the input
impedance for a corner shorted microstrip antenna. . . . . . . . ..
A comparison of the computed and measured imaginary part of the
input impedance for a corner shorted microstrip antenna. . . . . .
Two thin wires imbedded in the dielectric of a grounded dielectric
substrate. The wires have three dipole MM modes on them. . . . .
A comparison of present calculation to published data [21] for the

real part of the mutual impedance between two thin wires imbedded

in a grounded dielectric substrate. . . ... ... ... .......
A comparison of present calculation to published data [21] for the
imaginary part of the mutual impedance between two thin wires
imbedded in a grounded dielectric substrate. . ... ... ... ..
A comparison of the magnitude of the mutual impedance of Fig-
ure 40 and the mutual impedance of the same geometry where the

dielectric substrate is replaced by free space. . . ... ... .. ..

viii

79

80

81

82

86

88

89

90



CHAPTER 1

INTRODUCTION

A moment method (MM) [2] solution is applied to two different antennas in
the presence of a grounded dielectric substrate. A grounded dielectric substrate is
a dielectric substrate of thickness T' on top of an infinite ground plane. The first
antenna is a microstrip antenna consisting of a perfectly conducting rectangular
patch lying horizontallj' on toﬁ of. the dielectric substrate. Figure 1 in Chapter II
shows the geometry of this antenna. The problems of interest for the microstrip
antenna are plane wave scattering and the ihput impedance when the antenna is
excited by a filament of uniform current. The antenna can be loaded by a lumped
impedance in a filament of uniform current. The other antenna is a perfectly con-
ducting vertical wire, or monopole antenna, extending from the ground plane, into
or through the dielectric substrate. Figure 12 in Chapter III shows the geometry
of this antenna. The problems of interest are the self impedance of a monopole
and the mutual impedance between two monopoles.

The MM solution for the perfectly conducting rectangular patch is begun by
considering the patch to be excited by an arbitrary source with currents (J?, lVIi)
located in either the dielectric substrate or the free space region above it. The
surface equivalence theorem is used to replace the patch with an unknown surface
current, J°. The boundary condition that the total tangential electric field on the

patch surface must be zero is applied to yield the integral equation for the unknown



surface current J°. The unknown surface current J° is expanded into a sum of
N (known) entire domain expansion functions. The MM solution determines the
N coefficients in this expansion. For plane wave scattering, the patch is excited
by a uniform plane wave with an incident angle of (8;,¢;). The scattered field
is the sum of the field of each basis function multiplied by the strength of that
basis function. To find the input impedance, the patch is excited by a vertical
filament of uniform current extending from the ground plane to the patch. The
input impedance is determined from the ratio of the voltage at the feed point and
the current into the feed point. The effect of the load is determined from modeling
the microstrip antenna as a two port device, where the excitation represents port
1 and the load represents port 2. The current through the load is determined from
the unloaded case. The load current acts as a source and is added to the unloaded
excitation to obtain the loaded result.

Many papers have been written on the rectangular patch microstrip antenna.
Early work by Munson [3] and Derneryd [4] modeled the microstrip antenna as a
transmission line that radiates from the open ends. This model does not include
higher order modes and thus is valid only near the first resonance of the patch.
Lo et al. [6] and Richards et al. [7] used a cavity model. This model assumes
an admittance around the open edges of the patch to form a cavity. Higher or-
der modes are supported by a cavity model. Agrawal and Bailey [5] performed
a wire grid analysis of the microstrip patch. This was one of first solutions that
attempted to model the microstrip patch by the currents on the patch. Newman
and Tulyathan [8] employed a MM solution similar to that for plates. Bailey and
Deshpande [9,10] and Pozar [15] used the Greens function for the grounded dielec-
tric substrate in their MM solutions and used entire domain mode functions. Pozar

compared the numerical efficiency of the entire domain modes and the piecewise
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sinusoidal modes when solving for the impedance matrix. Most of the work up
to this point was primarily concerned with the behavior of the microstrip patch
in a narrow band around first resonance. Newman and Forrai [14] examined the
wide band scattering of the microstrip patch. An impedance matrix interpolation
scheme was employed to minimize the number of times the MM impedance matrix
had to be computed. This report will examine the wide band scattering and the
wide band input impedance of a loaded rectangular patch miérostrip antenna. It
will be shown thaf when the antenna is loaded by a vertical filament of uniform
current that contains a lumped impedance, the results closely approximate the
behavior of a microstrip antenna loaded through a coaxial port.

The MM solution for the perfectly conducting vertical thin wire is begun by
considering the wire to be excited by an arbitrary source with currents (J%, M¢).
The wire is replaced by a unknown surface current J°. Thin wire approximations
are applied to this surface current. It is modeled as a vertical or % directed filament
of current [17]. This current is approximated by a sum of N (known) basis
functions. The MM solution determines the unknown coeflicients in this expansion
for excitation by the so called delta gap generator [19]. The input impedance is
determined from the ratio of the excitation voltage and the current on the wire at
the point of excitation. The mutual impedance is determined from the ratio of the
excitation voltage on one wire to the current on the other wire.

Collin and Zucker [18] analyzed a vertical electric current element inside a two
layer earth. They modeled the earth as flat and therefore their analysis is similar to
that of a vertical current element inside of a grounded dielectric substrate. Pinhas
and Shtrikman [22] analyzed vertical currents in the dielectric region of a grounded
dielectric substrate by modeling the vertical current as a horizontal surface current.

One of their primary interests with this analysis was modeling the vertical current



for a coaxially fed microstrip antenna. Chi and Alexépoulos [21] performed an
analysis of a vertical wire in a grounded dielectric substrate which is similar to the
one presented in this report. Their excitation was a magnetic frill current in the
aperture of the coaxial feed on the ground plane. This report will use the simpler
so called delta gap generator for the excitation and compare the results to theirs.
It is shown that the two different excitations produce nearly identical numerical
results. '

Chapter I1 describés the derivation of the integral equation and the MM solu-
tion for the microstrip antenna. Chapter III describes the same derivations for the
vertical monopole antenna in the grounded dielectric substrate. Chapter IV con-
tains the results for plane wave scattering and input impedance of an unloaded and
loaded microstrip antenna. Data from both a MM computation and measurement
is presented. Chapter IV also shows the mutual impedance between two vertical

monopoles in a grounded dielectric substrate. Chapter V summarizes this report.



CHAPTER II

THE INTEGRAL EQUATION AND MOMENT METHOD
SOLUTION FOR THE RECTANGULAR PATCH MICROSTRIP
ANTENNA

2.1 Introduction

This chapter will describe the integral equation and the moment method [2]
(MM) solution to the problem of plane wave scattering and input impedance of
a rectangular patch microstrip antenna on an infinite microstrip slab. The basic
geometry of this structure is shown in Figure 1. The antenna can be excited by
either a filament of uniform current extending vertically through the dielectric
substrate or by an incident plane wave. A load will be modeled by an uniform
vertical current with fixed impedance.

The solution is begun by using the equivalence theorem to replace the perfectly
conducting patch by an unknown surface current J»S . Then, the integral equation
for J¥ is obtained by requiring that the total electric field tangent to the patch

surface be equal to zero. Finally, the integral equation is solved using the MM.
2.2 Derivation of the Integral Equation
This section describes the use of the surface equivalence theorem to derive

the integral equation for the problem of radiation or scattering by a perfectly

conducting rectangular patch on an infinite dielectric substrate on top of an infinite
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a) Top view of a perfectly conducting rectangular patch on top of a infinite dielec-

tric slab.

.
E:‘,LHZ,I

b) Side view of a perfectly conducting rectangular patch on an infinite dielectric
substrate on a perfectly conducting ground plane. It is excited by an arbitrary

source with electric and magnetic currents (J*,M?*).

Figure 1: The basic geometry of a microstrip patch antenna.
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perfectly conducting ground plane. The geometry of a dielectric substrate on top of
a perfect conductor will be referred to as a grounded dielectric substrate. Figure 1
shows a perfectly conducting rectangular patch of length 2H in the % direction
and width 2W in the ¥ direction on a grounded dielectric substrate. The region
above the dielectric substrate, referred to as Region I, is free space. The region
inside the dielectric substrate, referred to as Region II, has a permittivity of es,
permeability of ug, and thickness T. The origin of the coordinate system is placed
at the center of the rectangular patch. The normal to the rectangular patch surface
is the % direction. An arbitrary source, which can be located in either Region I or
Region II, has electric and magnetic currents (Ji,Mi) that illuminate the patch
with incident fields (E,H). Note that (E?, H?) are the fields of (J?,M¢) in the
presence of the grounded dielectric substrate without the rectangular patch. Let
(E,H) denote the electric and magnetic fields produced by (J*,M?) in the presence
of the grounded dielectric substrate with the rectangular patch.
Since the patch is a perfect conductor, the equivalent current on the rectan-
gular patch surface will be
35 =3 xH. (2.1)
Since the patch is infinitesimally thin, the surface current Js actuélly represents
the vector sum of the surface current on the top surface and of the surface current
on the bottom surface of the patch [12]. The equivalent problem is illustrated in

Figure 2. The total electric and magnetic fields in either region are
E=E +ES (2.2)
H=H'+H (2.3)

where (ES HS ) are the fields radiated by the equivalent current J S in the presence

of the grounded dielectric substrate.
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a) Top view of the equivalent surface current J¢ replacing the perfectly conducting

rectangular patch.

1) Side view of the equivalent surface current J° replacing the perfectly conducting
rectangular patch on a grounded dielectric substrate. It is in the presence source

currents (J* M! ).

Figure 2: The equivalent geometry of a microstrip patch antenna.

8



On the surface of the patch, the tangential components of the total electric

field must equal zero. Then, from Equation (2.2)
(B'+ES)x 2 = 0. (2.4)
This can also be written as
s | (2:5)
This is the integral equation for J° since
ES = /_TV [_I; G2.35d2' dy' (2.6)

where G2 = G2(2',y' | =,y,2) is the dyadic Green’s function for the grounded
dielectric substrate. ES is a function of (z,y, z), while J° is a function of (z',y').
The dyadic Green’s function G2 is used only to show the integral form of an electric

field and will not be used in the analysis.

2.3 The General Moment Method Solution

This section will use the integral equation developed in the preceding section to
develop a general MM solution for the geometry of Figure 1. The unknown surface
current in the integral equation will be replaced by a sum of N known vector
expansion functions of unknown strengths. By taking an inner product between
Equation (2.5) and a set of N vector weighting functions, a matrix equation is
formed. A Galerkin solution will be used and expressions for the matrix elements
will be given.

To begin the solution for the unknown equivalent surface current, J° is rep-

resented as a sum of N known vector expansion functions

N
35 =Y 1,33 (2.7)
n=1



where J2 are the expansion functions and Iy, represents the unknown strength of
each expansion function. Let Eﬁ be the field radiated by the expansion function
JS in the presence of the grounded dielectric substrate. Then Equation (2.5) can

be written as

N .
- Z InEﬁ tan — E%an' (2'8)

n=1

By taking the inner product of Equation (2.8) with a set of N known vector
weighting functions defined on the surface of the patch, Equation (2.8) reduces to
a N x N system of simultaneous linear equations. These equations can be written
compactly in matrix form as

[Z][1] = [V] (29)
where [Z] is an N x N impedance matrix, [I] is a N element current column array
containing the unknown cc;eﬂicients I, of the expansion of J5 and [V] is a N
element voltage vector column array. Applying a Galerkin solution, which defines
the vector weighting functions to be the same as the vector expansion functions,

a typical element of [Z] is
w H 5 S
Zrun = —LW /_H ES .35 de dy (2.10)
and a typical element of [V] is
Wl G s
Vi = /_W /_HE .35, dz dy. (2.11)

By applying reciprocity to Equation (2.11), the elements of the voltage vector can
be expressed in terms of the electric field of J3, in the presence of the grounded

dielectric substrate. The reciprocal expression is

Vim = /Ei-.ﬂ dv (2.12)

10



where the integral is over the volume of the impressed current and Ej, is the
electric field of J5,. Now both the impedance matrix elements and the voltage
vector elements are expressed in terms of the electric field of the expansion and
weighting functions.

Note that in the preceding equations, the tan subscripts that appeared in
Equation (2.8), from which the above were based, have been»dropped. This can
be done since the vector weighting functions have direction tangential to the patch

surface.

2.4 Evaluation of the Impedance Matrix

In this section, exact integral expressions will be developed for the imped-
ance matrix elements using the general expression developed in the preceding sec-
tion. The expansion functions representing the unknown surface current will be
restricted to having either X or ¥ vector direction. Figure 3 shows an expansion
function, J3, on the interface of Region I and Region II. The electric field for
J ;f in the presence of the grounded dielectric substrate will be developed using the
plane wave expansion method [13]. Note that this electric field is used for evaluat-
ing both Equation (2.10) and Equation (2.12). Equation (2.10) will be evaluated
to obtain the expressions for the impedance matrix elements.

Since the surface current exists on the interface of Region I and Region I/,
both regions can be considered source free. The fields in each region can be con-
structed from two scalar functions [1]. These scalar functions must satisfy the

scalar wave equation. For Region I,

¥
(vied)| ™ =0 (2.13)

‘I’eI

11



Figure 3: The MM expansion function, J;S; , at the dielectric interface.

and for Region I1,

v
V2esd)| ™ <o (2.14)
Verr
where,
Ko = wy/€Qfg (2.15)
K9 = Ww4/€aMp. _ (2.16)

¥y generates fields with a magnetic field tangent to the planar interface (TM)
and ¥, generates fields with an electric field tangent to the planar interface (TE).
The E and H fields of either region can be defined from the ¥p,, ¥, ¢, and pu of

the appropriate region using

1
E= -V x(&¥)+—V x V x (¢m) (2.17)
1
H=Vx(2¥ny)+—VxV x(2¥,). (2.18)
Jwp
12



Using the plane wave expansion method [13], the scalar wave functions can
be defined by their spectral functions. The equations to transform the spectral

functions to the scalar wave functions are, in Region I,

v

‘I’m[ _ _!_— /00 /‘°° ml e_](nzz+fcyy+nzlz) dnx dK,y (219)

7 47!'2 —o0 J—00 ‘i,
el el

where

Kyl = ng — K2 — n?, Re(x,1)> 0, Im(x,1)< 0 (2.20)

and in Region I,

Urr |1 /09 /oo | Wmrr cos(kz2[z +T1) e~ 5sTHR5Y) g di
= _2' — a - . T y
Yerr am? Jmeo Jmoo |y sin(raalz + T1)
(2.21)
where
Kzo = /K3 — K2 — k2 Re(kz2)> 0, Im(k,2)< 0. (2.22)

The conditions already satisfied are: the boundary condition on the ground
plane (¢ x E;; = 0) in Equation (2.21), the radiation condition as r — oo in
both Equation (2.19) and Equation (2.21), and the integrals in Equation (2.19)
converge as z — co. The following boundary conditions at the dielectric interface,

z = 0, still need to be satisfied
Z X (EII - EI) =0 (2.23)

i x (Hp — Hp) =33, (2.24)

J,b; is assumed to be Fourier transformable and expressed in X and § compo-

nents. The Fourier transform pair is
I = #Jpat9J
n XJnz +YJIny

13



[ i ST (129
35 = xJ,,+yJ+y

- / v / o [%Tna + §Jny] 2= 508) do dy (2.26)

where J ne and J,fy are the transforms of Jyz and Juy respectively.

By substituting Equations (2.19) - (2.22) into Equations (2.17) - (2.18), the
integral expressions for Ej, Hy, Err, and Hjy are obtained. Applying the boundary
conditions of Equations (2.23) - (2.24), with Equation (2.25) substituted into
Equation (2.24), solves for ¥ .7, ¥.r, .11, and ¥,yy in terms of Ju, and jny.
From this result, the total electric and magnetic fields of Region I and Region I
[13] can be written in terms of Jnz and Jny using Equations (2.17) - (2.18).

The tangential electric field components at the patch surface for a % directed
surface current is

Eqzn / / (x24F + r2Ay) JStelmaategy) o g

Eyn rzry (A — Ay)
(2.27)

and for a ¥ directed surface current

E _ / / KzKy AE AM) j,f;- “](Kq:ﬂ“-lﬂyy) dK,z dK)y
Eyn (k245 + K2 Ay)
(2.28)
where
wpg sin k0T
_ LZ7 ¥ 2.
Ky1Kz28in k0T
Ay = =2 2.30
M wnzDM ( )
k2 = w24kl (2.31)
Dp = kKzpco5K,9T + 36,1 sink,2T (2.32)
Dy = e€9K,1 o8 K0T + g€k sin k0T (2.33)
14
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The elements in [Z] are obtained by inserting Equations (2.27) and (2.28)

into Equation (2.10) [13]. If mode n and mode m are X polarized, the mutual
impedance is
J (o) oo - -
Zmn = 1 /_ _ /_ _ 34 + <2 an] T T drs dr,y (2.34)
If mode n is % polarized and mode m is § polarized, the mutual impedance is
] [e o] o ¢) s+ F_ .
Zon = 72 i _ [ _ ramy[Ap — Ay) Ty dr dry (2.35)
If mode n is § polarized and mode m is % polarized, the mutual impedance is
] (o o] oo 4 7
Zmn = 2 /_ _ /_ _ raylAp — Ay) Ty e dra dry (2.36)
If mode n and mode m are § polarized, the mutual impedance is
1 [® [P .2 2 P4 Fo
Zmn = 75 /_ ~ /_ [ ap + xRy Ty Ty dra dry (2.37)
where, for example, J;}, is the Fourier transform of Jnr (see Equations (2.25)

and (2.26)) and
oy o —)(Kzz+KyY)
Jo, = f_ " /_ | Jnae v9) dz dy. (2.38)
Equation (2.39) shows the general form of an element of [Z] and a trans-
formation of the integral from (k;,%xy) coordinates to (x,a) coordinates. The

transformation shown converts two integrals with infinite bounds to one integral

with finite bounds and another integral with one infinite bound. This simplifies the

application of the [Z] element expressions since they are integrated numerically.

o0 (o o] -y =
—00 J—00

2r poo o :
- /0 /0 F(x,0)J %07 kdx da (2-39)
where,
Kg = Kcosa (2.40)
Ky = Ksina. (2.41)
15



2.5 Evaluation of the Voltage Vector

This section will obtain the general equations of the voltage vector of Equa-
tion (2.11) for an incident uniform plane wave in Region I and for a vertical

filament of uniform current in Region I1.

2.5.1 Voltage Vector for an Incident Plane Wave in Region |

This subsection will evaluate Equation (2.11) for the case of a uniform plane
wave. Figure 4 shows the side view of a plane wave incident on a microstrip patch.
A nonphysical impressed current that radiates a uniform plane wave in free space
will be defined so that the voltage vector elements can be written in terms of
the far zone electric field of a weighting mode in the presence of the grounded
dielectric substrate. Finally, the far zone electric field of the weighting mode will
be evaluated asymptotically so that the voltage vector elements can be computed
analytically.

The electric field of a uniform incident plane wave in free space can be written

as
Ej = Ege*T (2.42)

where
K = ZXxgsinfcos¢ + yrgsinfsin ¢ + £xgcos ¢ (2.43)
r = Xrsinfcos¢ + §rsinfsing + Zr cos ¢ (2.44)

with 6, ¢ defining the spherical angle of incidence. An infinitesimal dipole source in

4nr
Jwig

free space with current of amplitude E( will produce the plane wave described
by Equation (2.42). Note that this source is physically unrealizable since the
amplitude of the source is proportional to the distance r. Since an impressed

current for a uniform plane wave in free space has been defined and the electric

16
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Figure 4: Plane wave incidence on a microstrip patch.

field of J ,‘% in the presence of the grounded dielectric substrate was developed in
the evaluation of the impedance matrix elements, Equation (2.12) can be used to
express the elements of the voltage vector for a uniform plane wave in free space
incident on the microstrip patch. Defining the impressed current to be in the far
zone of the microstrip patch, let the far zone field of J% be e;. Then, evaluating

Equation (2.12), the voltage vector elements are written as

Vm = €em - EO. (2-45)
0

Using the method of stationary phase [13], the far zone electric field of mode

m can be evaluated asymptotically. With this evaluation, e,, can be written as

_ IR0 g5 s s 5 T
em = 3 - {¢ [cos ¢éy — sin qﬁem] cosf + 6 [cos P€y + sin d)ez]} " (2.46)
where, for X polarized modes,
é&z = —C [(e,-n% - K'?;K'zl cos k,9T + ](ng - h‘,i)nzz sin nng] Jte (2.47)

17



éy = CKgrylrz1cosryoT + gsink;oT) . (2.48)

and for ¥ polarized modes,

ez = Chgry [nz~1 cos K,9T + 3sin k57| J.,"i,;y (2.49)
ey = —C [(ern(z) - Rlz,ﬂzl cos k9T + ](n% - ng)nzg sin ngT} jj,;y (2.50)
with
7sin k9T
= — 2.51
wD gDy (2.51)

When evaluating Equations (2.47) - (2.50), it is necessary to replace (kz,ky) by

their values at the stationary phase point [14],

(kz,Ky) — (Ko sin b cos @, kg sin O sin P) (2.52)

2.5.2 Voltage Vector for a Vertical Uniform Filament of Current in
Region II

This subsection will obtain the voltage vector elements for a uniform vertical
current filament. Figure 5 shows a vertical filament of uniform current exciting the
patch. Since the impressed current of this source is known and the electric field
of J3, in the presence of the grounded dielectric substrate has been developed, the
voltage vector elements will be obtained using Equation (2.12). For this problem,
the electric field of J5, can not be simplified by a far zone asymptotic approxima-

tion. The voltage vector element for this excitation is obtained in integral form.

Starting with Equation (2.12) and letting

zlpb(z —zf)8(y —ys) -T<2<0

(2.53)

0 elsewhere
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a) Top view of a microstrip patch excited by a current filament.

Region I

b) Side view of a microstrip patch excited by a current filament.

Figure 5: A rectangular patch microstrip antenna excited by a vertical current
filament.
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the voltage vector element becomes
0
Vi = / L Bemldz. (2.54)
Ezm iS
© K
Eym = _47r2 / / - wl;]lw Kz dmze Hmzzf +ryYf) cog k22(2 + T)drg diy (2.55)

for % polarized modes and

> ¢) -
Em = ~—-/ / Tzl ~J(””zf+'°yyf) cos k,9(2+T) dkg dky. (2.56)
oo wD M

for § polarized modes [13].
Substituting Equations (2.55) - (2.56) into Equation (2.54) and integrating
over z defines the integral equation for the voltage vector element of a vertical

uniform current. For X polarized modes,

/. /00 K,1sin nngnmjmme—J(nzzf—Hcyyf) drg dk (2.57)
oo wnzzDM ’

and for § polarized modes,

© Kz1sinKz ol sink,oT - — ke p+ryys)
Kyd TEfTRYYS) .
./ /oo wkz9D my© o dry (2.58)

Equations (2.57) - (2.58) contain an exponential term dependant on the (z,y)
location of the vertical current. This factor will produce an oscillatory conver-
gence in the integration which will complicate its compufation with respect to the
computation of the impedance matrix elements.

Equation (2.59) shows the general form of the voltage vector element for the
vertical uniform current. It also shows the transformation from (kz,xy) to (,a)

coordinates used in the evaluation of the integral.
Vm = / / Iﬁz, K;y Jme (szf+'cyyf) dnm dK,y

2
= /”/ G(k,a) me =T F Y1) ¢ dic oy (2.59)
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The V,, for a wire of radius a is easily developed from the solution for V, of
the filament if the wire is modeled as an infinite number of filaments as radius a
around some point (z¢,y:). Using Equation (2.59), the voltage vector of the wire
is
Vi = i /21r /2’1' /oo G(n,a)jme_"(”” [zc+a cos ¢]+ky[yc+asin d’])n dr de d.
2rJo Jo Jo
(2.60)

By evaluating the ¢ integral, Equation (2.60) becomes
2r poo -
V= [ 7 6, @) me 552 036) Jo(ca) dic da (2.61)

where J is the zero order Bessel function.

2.6 Loading of a Re>ctangu'la1; Microstrip Patch

This section will describe the procedure for modifying the voltage vector when
a lumped load at an arbitrary position (z,y) is attached between the rectangular
microstrip patch and the ground plane. The load is assumed to be in a vertical
filament from z = —T to z = 0 with a uniform current of magnitude Iy flowing
through it from the patch to the ground plane. The load current is determined by

modeling the microstrip antenna as a two port device.

Equation (2.9) describes the matrix equation for the MM solution of the un-

loaded microstrip patch. When a load Z is added, Equation (2.9) becomes
(21} = [V] - I, [VE] (2.62)

where [Vi] is the excitation voltage vector, I} is the magnitude of the uniform
current through the load, and [VL] is the voltage vector for a 1 amp current
filament at the load position, (zf,y;). Note that the 1 amp current from which

[VL] is obtained is in direction opposite to the load current.
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Figure 6: The equivalent circuit of a symmetric two port with an I; current
source at port 1 and a load Z at port 2.

In order to determine [y, the microstrip antenna is modeled as a two port
device. Figure 6 shows the equivalent circuit of a symmetric (Z;3 = Z2;) two port
device excited at port 1 by an I; current source and with a load of impedance Zj,

at port 2. From circuit theory, the current through Zj is

_ _Z__1_2_I'
= ;.
Zay + 7,
Since the product of Z1g and I; is the voltage at port 2 with an open circuit at

I (2.63)

port 2, Equation (2.63) can be written as

Via

Iy = ———
L= Zyn+ 2,

(2.64)

where V79 is the open circuit voltage at port 2.
For the microstrip patch, Vi3 is equivalent to the voltage at (zf,y;) for an

unloaded antenna. This voltage is called V{° and can be found from

oc 0
Ve =~ [ Bads (2.65)
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where E, is the % directed electric field at (zy,yr). This integral can also be

expressed as

N 0
Ve == X In [ Bem d. (2.66)
e

where Em is the Z directed field of patch mode m at (zy,yr) and Ip, is the
strength of mode m for the unloaded antenna. Since the elements of [VL] are
obtained for a 1 amp % directed current filament at (zy,yy ), Equation (2.12) can

be written for [VL] as
0
vi - /_ L Em -2 dz
0

where E,; is the total field of mode m at (z,y;). From Equations (2.66) and (2.67),
the matrix equation

vee = —[0t [v¥] (2.68)
can be written where [I] is the current column solution of Equation (2.9) for the

unloaded antenna.

Z99 for the microstrip patch is obtained by solving for [I| when the excitation
voltage vector in Equation (2.9) is [VL]. Using this [I] in Equation (2.68) to solve
for the voltage at the load port, Zjy is the ratio of the voltage at the load port
to the input current at the load port (which is 1 amp). Note that the excitation

voltage vector [Vi] is not used in determining Zjs.

2.7 Expansion and Weighting Functions Used in the MM Solution

The expansion and weighting functions used in this MM analysis will now be
defined. The weighting functions are chosen the same as the expansion functions,

and thus a Galerkin solution is employed. The expansion functions chosen will
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be entire domain, which implies that each mode exists over the entire rectangular
patch surface. Each expansion function will be separable into a function of z and
a function of y. These functions of z and y are Fourier transformable, as required
in the derivation of the field equations for a surface current on the patch. Below
the expansion functions and their transforms are presented. The advantages of
choosing these expansion functions will also be discussed.

Starting with the % polarized expansion function, a mode n is defined to be

an = Xp(m,H)Yq(y, W)

— sin X ar
= sin 2H(:¢:+H) cos 2W,(y+W) (2.69)

where now mode n actually specifies an integer doublet pg where p = 1,2,3,...
and ¢ = 0,1,2,... are the bounds. When the Fourier transform, defined by Equa-

tion (2.26), is applied to Equation (2.69) the result is
Ik = XE(ke, H)YE (ky, W) (2.70)

where

L

_ H

PO Aot LA
"z_(‘gﬂ)
F sinkg H

= ié?j@%? p=2,4,6,... (2.71)

o]

N 2 w

vi = 158 - 1,35,

5~

2n§! sin nyW
m
x5 — (dp)?

Similarily, the ¥ polarized modes are

g=0,2,4,.... (2.72)

me = Xpl(y, W)lfql(-'l?, H)

' '
— snlT a7
= sin 2W,(y + W) cos 2H(:c + H) (2.73)
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with the corresponding Fourier transform
Ty = X5 (5y, W)Y (0, H). (2.74)

Note that p',q' can be the same or different from p, q.

The transforms of the expansion and weighting functions are composed of
even and odd functions of k; and ky. Realizing that the integral from —oo to oo
of an odd function is zero, certain impedance matrix and voltage vector elements
may be identically zero. As an example, consider the impedance matrix integral
for an element where both modes n and m are X polarized. For this integral, the
function F(kz, ky) (refer to Equations (2.34) and (2.39)) is an even function of kz
and ky. Using Equatioﬁs (2.71.) ~-(2.72), Figure 7 shows whether the expansion
function Jnz is even or odd with respect to Kz and Ky for all possible combinations
of p and q being even or odd. Figure 8 shows whether the integrand is even or
odd with respect to kz and &y for all possible even-odd combinations of py, gn, pm,
and ¢, and whether the integral is non-zero or not. Only 1/4 of the elements in
Figure 8 are non-zero. This allows a simplification of the general integral described
by Equation (2.39). For the non-zero elements, the a integration is performed from
0 to /2 and the result multiplied by 4. The zero elements are set to zero. Similar
results are found with Equations (2.35)- (2.37).

With the voltage vector integrals of Equations (2.57) - (2.58), the exponential
term can be separated into functions of k; and xy and these functions can be

broken into a sum of an even function and an odd function. Equation (2.75) shows

this process.
eI Kzzptryys) _ —IKzTg —IKyYf

= (coskgzf — 3sinkzzs)(cos kyys — sinkyys). (2.75)
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Figure 7: The x; and ky functions of Jne as even or odd functions with respect
to p and ¢q. Note: e is even, o is odd.

Expanding Equation (2.75), the integrand can be written as the sum of four terms,
each separable into functions of x; and xy. By analyzing the even-odd functions
in each of these terms, only one term is non-zero. Figure 9 shows the integrands of
an % polarized mode voltage vector for all possible p and g even-odd combinations.
For the voltage vector, none of the elements are zero in general, however, by having
integrands that are even functions of x, and ky, the o integration can be performed
from 0 to w/2 and multiplied by four.

One advantage of the entire domain expansion functions is that as the patch
increases in electrical size, the width of the current transforms decreases. This
results in more rapid convergence of the integrals involving the current trans-
forms. The mode shapes also correspond to the resonant current distributions on
the patch. This enables a simple physical interpretation of the magnitude of the

elements in the current column vector.

2.8 Computétion of the Scattered Field and Input Impedance

Once the impedance matrix elements and voltage vector elements are known,
the current column array can be obtained using standard matrix algebra. Assum-

ing the current column is known, this section will obtain expressions for the far
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Figure 8: The x; and &y functions of the integrand (F(xz,xy) is even for both
Kz and Ky) as even or odd function with respect to pn,qn, pm and gm.
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Figure 9: The integrands for a % polarized mode voltage vector with respect to p
' and gq.

zone fields of the patch. These far zone fields are referred to as the radiated fields
when the excitation is by the vertical current filament and as scattered fields when
the excitation is by an incident plane wave. For excitation by the vertical uniform

current, the input impedance of a mictrostrip antenna will be found.
The electric field of the patch is found from the sum of the field of each mode

weighted by the strength of each mode,
N
E=)Y LE, (2.76)
n=1

where E, is the radiated field of mode n as given by Equations (2.27) and (2.28).

For the far zone electric field, Equation (2.76) reduces to

N
e(0’¢) = Z Inen(0,¢) ' (277)
n=1

where e, is the far zone asymptotically approximated field of mode n, defined in
Subsection 2.5.1.

The input impedance of a microstrip antenna is the ratio of the voltage at the
feed port to the input current. The voltage at a port on the microstrip patch for
arbitrary excitation of the antenna is given by Equation (2.68) in the Section 2.6.

When the excitation is a 1 amp uniform current at the port where the voltage is
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desired, the input impedance can be written directly from Equation (2.68) as
Zin = —[I'V] (2.78)

where [I] is the current column solution and [V] is the voltage vector at the input

port. The probe itself tends to be inductive, and the reactance of this inductance
can be modeled as [9]
2
= poT = .
X1 = mT fmu; In (nzT) (2.79)
where fpp, is the frequency in megahertz. Using Equations (2.78) - (2.79), the

input impedance becomes
Zin = ~UI'[V] + Xy (2.80)

The input impedance of a microstrip patch excited by a vertical filament of
uniform current shows good agreement to the input impedance of a coaxially fed

microstrip antenna when the thickness of the substrate, T', is much smaller than

one wavelength.

2.9 Numerical Difficulties

There are several numerical problems to overcome when computing the plane

wave scattering or input impedance of a rectangular microstrip patch antenna.
One problem is the CPU time to compute the impedance matrix. This problem
is especially severe if one desires to compute the wideband scattering or input im-
pedance of the antenna. Both the impedance matrix and voltage vector element
integrands contain surface wave poles which produce singularities in the integra-
tion. Finally, there is the exponential term in the voltage vector element integral
which produces an oscillatory behavior of that integral. Each of these problems

will be discussed in the following subsections.
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2.9.1 CPU Time Reduction for the Impedance Matrix Computation

Equation (2.39) shows the general form of an impedance matrix element in-
tegral expression and it is seen that the integrand is a separable function of j,f
and J;. To generate all the elements of the impedance matrix, for every J.,'," cal-
culation there must be N calculations of J,,. Since there are N calculations of
JF, the total time to compute all the elements would be proportional to N 2. The
impedance matrix is symmetric, therefore only N 2/ 2 elements need be calculated
to generate all the elements.

Referring to Equations (2.71) - (2.72), the transforms J;} and J;; for the cho-
sen expansion and weighting functions will either be equal or equal and opposite,
depending on n. This indicates that when J;} is calculated, J is also known.
When computing the elements of the impedance matrix, all N J-,'l" are calculated
(which means that all N J-,,; are obtained as well) within the integral expression of
Equation (2.39). The impedance matrix elements are then obtained by multiplying
J-,'," and j,’,', together for n = 1,...,N and m = 1,..., N. Since the time required
to multiply J;} and J; together (which is proportional to N2/2 when taking the
symmetry into account) is significantly less than the time to compute j,',*' andj,'{
(which is proportional to N), the total time to compute all the elements of the

impedance matrix tends to be proportional to N.
2.9.2 CPU Time for Wide Frequency Band Calculations

To make a broadband computation of the scattering or input impedance of a
microstrip antenna, many frequency points are needed to show the behavior near

resonance since microstrip antennas are narrow band. Thus, although the CPU

time to evaluate the matrix elements at a single frequency may be tractable, the
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CPU time required to evaluate the matrix elements at hundreds of frequencies over
a wide bandwidth can be prohibitive.

A way to make broadband calculations of a microstrip antenna starts by an-
alyzing the impedance matrix with respect to frequency. The elements in the
impedance matrix are very slowly varying with frequency [16], which is quite dif-
ferent from the scattered field or input impedance data. An interpolation tech-
nique can be employed to approximate the impedance matrix elements at fre-
quencies in between the frequencies at which the elements are calculated using
Equations (2.34) - (2.37). Over the desired bandwidth, data points separated by
a frequency interval of Af, are required to characterize the behavior of the micro-
strip antenna. The number of computations required to get data points every Af,
would be impractical, so the impedance matrix elements are computed at intervals
of Af. instead. Typically, Af. > Af,. Three of the points where the elements
are calculated directly, f.1, fe2, fe3, (With fo1 < fea2 < fc3) will define a frequency
band of width 2A f.. A quadratic interpolation method can approximate the val-
ues of the elements every Af, in between f.1, fc2 and f.3, fc3. By dividing the
desired frequency band into sub-bands of width 2A f. and applying the quadratic
interpolation method, data points for the impedance matrix elements at frequency
intervals of Af, can be obtained for the entire desir_ed bandwidth.

The CPU time to evaluate the integral expressions for the voltage vector of a
uniform current filament, given by Equations (2.57) and (2.58), is similar to the
CPU time required to evaluate the impedance matrix. Analysis of these voltage
vector elements with frequency shows that they are slowly varying. For radiation
problems and loaded antenna computations, this voltage vector is interpolated in

the same manner as the impedance matrix.
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2.9.3 Surface Wave Poles

The integrand for the Z,,, integrals are singular when Dg or D)y of Equa-
tions (2.32) and (2.33) equal zero and the integrand for the V, integrals are singular
when Djs equals zero. The D singularities are due to the TE surface waves and
the Djs singularities due to the TM surface waves that exist on the grounded
dielectric substrate. As the frequency increases, the number of surface wave poles
can increase. For a lossless dielectric, these poles lie right on the Re(x) axis be-
tween kg, the propagation constant of Region I (in this problem, free space), and
k2, the propagation constant of Region II. When the dielectric is lossy, the poles
move into the fourth quadrant, but for low loss dielectrics, they are very close to

the Re(k) axis. Figure 10 shows a map of the x plane with poles near the Re(x)

axis. To avoid these poles without having to compute their location and deforming
the contour around them, the staggered contour in Figure 10 is used. This method
has worked well with the imaginary stagger A on the order of 0.1k and returning

to the k axis around 1.1ks.

2.9.4 Oscillatory Behavior of the Voltage Vector

In Subsection 2.5.2, the integral expression for the voltage vector elements
of a vertical filament of uniform current was derived. The integrand contains an
exponential function where the argument is a function of (z 7,yy). This exponential
term contributes an oscillatory factor to the integral of Equation (2.59). Figure 11
is a typical integral with an oscillatory convergence factor. Note that the upper
limit on this integral is # and the plot is comparing the value of the integral verses
the upper limit of the integral. This integral oscillates around a converged limit,
with the size of the oscillations decreasing as = increases. Since the integral of

Equation (2.59) is evaluated numerically, the infinite upper limit on the « integral
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convergent integral.
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must be replaced by a finite limit (which is equivalent to z9 in Figure 11) where
the integral is well converged. This limit can be very large, so it would be desirable
to determine the converged value before the oscillations around this limit become
negligible. In Figure 11, &) represents a point where the converged limit of integral
is apparent.

The way used to determine this converged limit is by incorporating a peak
and valley detector in the numeric integration of the Vi, integrals. The numeric
integration computes the integral at discrete points. When a peak or valley is
found between three integral points, a quadratic interpolation is performed on
those three points to find the value of the peak or valley. Once a peak and a valley
are found, the average value of the two is computed. With each new peak or valley,
a new average is obtained. The integral is considered converged when the percent
difference between two consecutive averages of a peak and a valley is less than a

desired tolerance.
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CHAPTER 111

THE INTEGRAL EQUATION AND MOMENT METHOD
SOLUTION FOR A VERTICAL THIN WIRE THROUGH A
GROUNDED DIELECTRIC SUBSTRATE

3.1 Introduction

This chapter will describe the integral equation and the moment method {2]
(MM) solutions to the frobleﬁ of. the self impedance of a vertical thin wire and
mutual impedance between vertical thin wires on a grounded dielectric substrate.
The basic geometry of this structure is shown in Figure 12.

The solution is begun by using the equivalence theorem to replace the perfectly
conducting thin wire by an unknown surface current J5. Using the thin wire
approximations, J 5 is replaced by a vertical filament of current, #I S [20,21]. Then,
the integral equation for 2I° is obtained by requiring that the total tangential
electric field along the filament be equal to zero. Finally, the integral equation is

solved using the MM.

3.2 Derivation of the Integral Equation
This section describes the use of the surface equivalence theorem to derive the
integral equation for the problem of radiation by a perfectly conducting vertical

thin wire extending from an infinite perfectly conducting plane and through an

infinite dielectric layer directly on top of the perfectly conducting plane. The
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Figure 12: Side view of a vertical, perfectly conducting thin wire extending from
a perfectly conducting ground plane through a dielectric layer. It is excited by an

arbitrary source (J¢, M) that can be located in either Region I or II.
geometry of a dielectric layer on top of a perfect conductor will be referred to as a
dielectric coated ground plane. Figure 12 shows a perfectly conducting thin wire
of length L in the % direction and radius a (a < )) extending from a grounded
dielectric substrate. The region above the dielectric layer, referred to as Region I, is
free space (permeability ui9, permittivity €p). The region inside the dielectric layer,
referred to as Region I1, has a permittivity of €3, permeability of up, and thickness
T. The origin of the coordinate system is placed at the the point where the vertical
wire intersects the planar interface of Region I and Region II. The wire is excited
by source currents (Ji,Mi) which illuminates the wire with fields (Ei,Hi). Note
that (E?, H') are the fields of (J*,M?) in the presence of the grounded dielectric
substrate without the wire. (E,H) denote the electric and magnetic fields from

(Ji, Mi) in the presence of the grounded dielectric substrate with wire.
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Figure 13: Side view of the equivalent vertical current J° replacing the perfectly
conducting thin wire on a dielectric coated ground plane. It is in the presence

electric and magnetic currents (J%, M?).

Using the Equivalence theorem and ignoring the currents on the end cap, the

equivalent surface current on the wire surface will be
JS=jpxH (3.1)

Since the wire is thin, surface current on the wire surface is assumed to be Z

directed and uniform with respect to ¢. So J° can be written as
35 = iIS(z') at p' = a (3.2)

where the wire current IS is related to the wire surface current JS by

ﬁuhszg (3.3)

2ma

The equivalent problem is illustrated in Figure 13. The total electric and magnetic

fields in either region are

E=E'+ES (3.4)
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H=H +H (3.5)

where (ES ,HY) are the fields radiated by the equivalent current J5 in the presence
of the dielectric coated ground plane.
On the wire surface, the tangential components of the total electric field must

equal zero. Then, from Equation (3.4)
(E'+E5)xp=0 (3.6)
For the % directed wire this can be written as
~-ES =E! (3.7)

Instead of enforcing the boundary condition on the wire surface, it will be enforced

the center line of the wire. This techniqﬁe is known as the filamentary test case.

3.3 The General Moment Method Solution

This section will use the integral equation developed in the preceding section
to develop a general MM solution for the geometry of Figure 12. The unknown
vertical current filament in the integral equation will be replaced by a sum of N
known expansion functions of unknown strengths. An inner product between each
side of integral equation and a sum of N known vector weighting functions will
yield the matrix equation. The expressions for the impedance matrix and voltage
vector elements will be given.

To begin the solution for the unknown equivalent vertical current, IS is rep-

resented as a sum of NV known expansion functions
N
=Y LIS (3.8)
n=1

where I,‘? is the n expansion function and I, represents the unknown strength of the

n expansion function. The superscript S is retained to distinguish the expansion
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function from the unknown strength. Expansion function n is nonzero over the
range zp1 < z < zp2. Equation (3.7) can be written as
N
- 3 ILES, =E. (3.9)
n=1
E,Sn is the £ directed component of the electric field of expansion function n radi-
ating in the presence of the grounded dielectric slab.

By taking the inner product of Equation (3.9) with a set of N known weighting
functions located on the wire center line, Equation (3.9) is reduce to the matrix
equation

(Z][1] = [V]. (3.10)
where {Z] is an N x N impedance matrix, [I] is a N element current column array
containing the unknown coeflicients I, of Equation (3.8) and [V] is a N element

voltage vector column array.

The scalar weighting functions employed in this solution will have the form
wm=1I5(z) atp=0 (3.11)

and thus are chosen identical to the expansion functions.

Expressions for typical elements of [Z] and [V] are given by

Zun = — [ ™ ES.IS dz (3.12)
Zm1
and
Vi = [ ™ ELIS da. (3.13)
zml

3.4 Evaluation of the Impedance Matrix

In this section, exact integral expressions will be developed for the impedance

matrix elements using the general expression developed in the preceding section.
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The equations will contain arbitrary expansion functions I,‘? and arbitrary weight-
ing functions I5. The electric field of a % directed vertical current filament in
either Region I7 or Region 11 is found in plane wave representation. This electric
field is used in Equation (3.12) to obtain the impedance matrix elements.

The vector magnetic potential for an infinitesimal vertical current of strength

I in free space at the origin is

JPE L

T T 4n T

(3.14)

where

Ko = w/€0p0 (3.15)

e—JKQT

— term in

and dz is the infinitesimal length of the current element. The
Equation (3.14) can be represented as a spectrum of plane waves [20] by

e 7 et

= = [ Jo(Be)

r

JYz2
38 dg (3.16)
Iz

where Jj is the Bessel function of order 0, the F in the exponential term is — for

z > 0 and + for 2 < 0 and 7; is defined as

Yy = \/Iig — 3%  with Re(y;) > 0 and Im(y,) < 0 (3.17)

Substituting Equation (3.16) into Equation (3.14) yields

JIdy poo eTIr22

A—Z“]z;‘ A Jo(Bp) 7

pds (3.18)

If this infinitesimal vertical current element is placed in the dielectric layer of
the dielectric coated ground plane (Region IT) at p' = 0 and z = 2/, the vector

magnetic potential in Region I can be written as, for —T < z < 2/,

_ Id?

A, =
7 j4r

/oo Jo(Bp) [enzz(z—z') + Roel722% R_Te"n”(”T)] pd3  (3.19)
0 Yz2
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and for 2’ <z <0,

'
A, = Idz /°° Jo(Bp) [e—nzz(z—z') + Ryel"22% 4 R_pe~N=2(2+T)| gdg (3.20)
_]47!' 0 Yz2
and for z > 0,
1
A, = Id> /°° Jo(Be) [Toel"21%) B dB3 (3.21)
]471' 0 Yz2

where, from Equations (3.17) and (3.15),

Vo1 = \/K§— B2 (3.22)
Y22 = /K- B2 (3.23)
Ky = wy/eaup (3.24)
and, the coefficients Ry, R_7,Tj are chosen to satisfy the boundary conditions
Ejpxz = 0 at z = -T (3.25)
E;pxz = Eyxn atz=0 (3.26)
H;;xz2 = Hyxn atz=0 (3.27)

where the subscript denotes the region in which the field is defined. The E and H

fields of the vector magnetic potential can be found from

H = VxA (3.28)
_ 12, 2
E - (V2 +x2) A (3.29)

where (€,x) are (€p,kp) for Region I and (€,x2) for Region II. Substituting
Equations (3.19) - (3.21) into Equations (3.28) - (3.29) and applying the boundary
conditions defined by Equations (3.25) - (3.27), the vector magnetic potential of
a vertical current of infinitesimal length located in Region /I becomes, for —T <

2 <2,

_1d,

4, = 1 /°° Jo(Bp)
2T Jo Yz2

e~ 22T cos v,9(2 + T) B dS (3.30)

[C—J7z22’ + ‘XM CcOS ‘Yzz(Z, + T)
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and for 2/ <z <0,

—Idz poo
A, = z / Jﬂ(ﬂp) [e—]‘yzgz +XM COS'YzZ(z +T)]
2% JO 72
e~ 1722T ¢og v,9(2' + T) B dp (3.31)
and for 2 > 0,
—IdZ' foo € _
A, = EF—/O JO(ﬂP)DL cosyz2(z' + T)e™1721% Bdg3 (3.32)
where
Xy = 0722 — €27z1 (3.33)
Dy
Dy = e7z1c087,2T + jegyz sinyyoT. (3.34)

If the vertical current of infinitesimal length is located in Region I at a point

(p = 0,z = z'), the vector magnetic potential can be written as, for —T < z <0,

Idz' [ Jo(Bp) [ '’ - T
A, = / T!elV22%2 4+ R 1722(2+T) d 3.35
T by [The71=2* + R e | 5dp (3.35)

and for 0 < 2 < 2/,

Id2' oo Jo(Bp) 2! -
A, = TUNTE) [ 121(2—2") R J’Yzlz] d 3.36
z Jam /0 Yz1 ‘ e B ( )

and for 2/ < z,

A, = Id?' /oo Jo(Bp) [e——nzl(z—z') n R6e_1721z] gdg (3.37)
Am Jo

where the coefficients R’_T,Rf), and T6 are solved for by substituting Equations

(3.35) - (3.37) into Equations (3.28) - (3.29) and applying the boundary conditions

of Equations (3.25) - (3.27). The vector magnetic potential for a infinitesimal

vertical current element in Region I is, for —T < z <0,

_Idz’ oo
2 Jo

Jo(Bp) 2 e=11217 o v.2(z + T)B dB (3.38)

A
z DM
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and for 0 < z < 2/,

IdZ oo J,
A, = / 0(Bp) [€2721 cosv,2T cosy,12—
12m J0 v Dy

€022 5in 72T sin v,92] e~ 7217 BdJ (3.39)

and for z' < z,

Idz' oo Jy(Bp :
= / JolBe) [62’7;1 c0s 7,97 cos ;12—
1227 Jo v Dy

€07Yz2 Sin 7,971 sin 7222'] e 212 3 dg. (3.40)

A, =

In general, the vector magnetic potential of an infinitesimal vertical current
element located in either Region I or Region II can be written as
T dzi 0o
Az =
7127 Jo

h(B,p)f(8,7')9(8,z)dB. (3.41)

The functions f and g are harmonic functions of z’ and z respectively. Their
second derivative with respect to z/ or z is

32

sl = i (3.42)
oo 3.43
529 = 19 (343)

where v = v, for f or g in Region I and 4 = «,9 for f or g in Region II.

Now that the vector magnetic potential for an infinitesimal vertical current
element is known, the vector magnetic potential for a current of finite length can be
found. If a filamentary vertical current I(2') exists between z; and z3, the vector
magnetic potential is found by integrating the product of I(z') and the appropriate
vector magnetic potential for an infinitesimal current element with respect to z'
between z; and z9. Although the current can be continuous through the Region I
- Region I interface, it will be analyzed in terms of the sections that wholly exist

in either Region I or Region II. The expressions generated for the vector magnetic
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potential of the vertical current will have both z; and z3 lie in either Region I or
Region II.

The general form of the vector magnetic potential of a vertical filamentary
current is given by Equation (3.41). The form of the expression depends on the

location of 2. For 2z < 27 < 23, the general equation can be written as

1 oo 2 '
Az = ]_2; 0 h(,@,/’)gL(ﬂ’Z)/;lz I(2)fr(8,2')d7 d3 (3.44)
and for z1 < z9 < z,
1 foo 2 ,
Az = 127/0 h(ﬂ,p)gu(ﬁ',z)/ﬁ2 I(Z')fu(B,2)dz' d3 (3.45)

and for z; < z < z3, the general equation is written as

1

o0
A, = ;2;/0 h(B, p)

+ 98,2 [ 1B, 4| dp. (3.46)

gu(B,2) [ 1 I(') fy (8, ') d2’

where the L subscript indicates that the f and ¢ for z < 2’ is used and the
subscript U indicates that the f and g for z > 2’ is used. With the restriction
that z; and 29 are both in the same region and by examining Equations (3.30) -

(3.31) and (3.39) - (3.40) it is seen that the following relationship exists between

fU,gU’fLa and 9L

fU(ﬂ’zI) = gL(ﬂ,z') = g(ﬂ,z’) (3.47)
9(B:2) = fr(B,2) = f(B,2) - (3.48)

These relationships are a result of reciprocity and allow Equations (3.44) - (3.46)

to be written as
1 o0 F ! '
A= /0 h(B, p)g(B, z) /z 12 I(')f(8,7')d=' dp (3.49)
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Ar = 5 / WB,p)f(8:2) [ * 1()9(B, ) de' dp (3.50)

A = 2= [0 |10, [ 1al6,)

+ g(6,2) [T 1Gf(B, ") 2] dap. (351)

In order to find the impedance matrix elements for the thin vertical wire, the

directed electric field is needed. From Equation (3.29), the E, field from % directed

vector magnetic potential is

1 (&

Using Equations (3.49) - (3.52), the general expressions for the E, fields can

be written. For z < z1 < 29,

=1 oo ' 3
E,=s5 )y MB.o)a(8,2) [T 1GNA8, ) d Bdg (353)

2rwe

and 2 <29 < z

B, = [*h(g,)f(6,2) [ 16ate, s B2 (359)
and for z; < z < 29,
o= o [T h(B,0) [ﬂ2 (16.2) [} 11006,
b o8 [7 167N a) + (L2 i,
R ILY TR )I(z)]ﬂdﬂ (3.55)

By examining Equations (3.30) - (3.32), the appropriate h, f, and g can be
determined to write the E,,, field equations for a vertical filamentary wire located

in Region II with mode current I,‘g and end points z,,) and z,9. For —T < z < z,,

-1 o Jo(Bp) _ .
Ezn = 27rw62 /0 O‘fzz )e .7722T CcOs 722(2 -+ T)Fz(znl’znZ,IS)ﬂa dﬂ (3-56)
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and for z,;) < z < 2,9,

- o0
E,, = 1 / JO(ﬁP) e—]'yzzT [,32 (e——]’)'ZQZ + Xy cos 722(2 + T))
2nwez JO 722
Golzn1, 2 I5) + B cos 1a2(z + T) Fy(z, zna, I7)
~ 11:2ln] BB (3.57)
and for z;1 < z0 <2 <0,
B, = -1 /00 Jﬂ(ﬂp)e—]'yzzT [e—]'yzzz + Xy cos 1;9(z + T)}
2weg JO Y22
Gazn1, 2n2, 15 )B° d8 (3.58)
and for z > 0,
=1 roo Jo(Bp) - -
Ean = 21rw/0 %M)e 2 G o(2n1, 2n2, 15 ) B2 dB (3.59)
where

-~ z
Fy(zy,z2,i) = /212 [e—nzzz + X pr cosvo(z + T)] i(z)dz (3.60)

T
Go(zy,z9,1) = /:c12 cosyz2(z + T)i(z) dz. (3.61)

From Equations (3.38) - (3.40), the A, f, and g for a vertical filamentery current
in Region I can be determined and the E; can be written for a mode current I,‘?

with endpoints at 2,1 and z,3. For —T < 2 <0,

-1 oo J, ~
Ezp = '2‘;‘; 0 _Ob(%)) cos 'Yz2(z + T)Fl(znl’ zn27[7§):33 dg (3'62)

and for 0 < z < z,1 < 2zp9,

B - 1 /°° Jo(Br)
zn
2mweg 0 Y1 Dy

—  €QYz28inY;2T sin 'Yzlz] Fl(znlv 2n2, 15)53 dg (3'63)

(2721 cos vz2T cos v, 2
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and for z,; < z < z,9,

=1 roo Jo(Bp) (a2 - 5 S
Exn = / SELIE I

i 2rweg JO v, Dy (ﬂ ¢ t(zn1, 2, I)
+ B%[ez7z1 €08 72T co8 7212 — €722 5in 7,27 sin 721 2]

Fi(2,202,I3) — 171D 13 (2)) BdB (3.64)

and for z,1 < zp2 < 2,

-1 roo Jo(Bp) — 5 S
Bon = g o 115G a5, IS) A28 (3.69)
F4
where
- s 9 s
By(21,z2,1) =/ e~ 1:1%i(2) dx (3.66)
)
- . T
Gi(z1,72,1) = /w [€27z1 cos 72T cos ;12
1
—  €072z25in79,2T sinv,12] i(z) dz. (3.67)

With the integral expressions for the E,, field of a vertical filamentary modes
in either Region I or Region II, the impedance matrix elements can be obtained
using Equation (3.12). The self impedance of a thin wire of radius a will be modeled
as the mutual impedance between two filaments of equal length separated by p = a.
Therefore, the expressions for the impedance matrix elements will be given for two

modes separated in the p dimension by the distance a. In order to simplify the

expressions for the elements of the impedance matrix, an I;‘;'; mode will be required
to exist entirely in either Region I or Region II. This is the same requirement
placed on an I;f mode in the development of the E,, expressions. The impedance
matrix element expressions are given for the different locations that an I,’f mode
and an IS mode can have in the z dimension. For an n mode and an m mode

both located in Region II with 2,0 < z,1,

1 0 Jo(Ba) _ z, ~
Zmn = 21rw62/0 7(22 )e nzzTG2(zmlvzm2’11§1)F2(zn1»2n2vI5)/33 dg (3.68)
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and for zp1 = zm1 and zp9 = zy9, both the n and m modes in Region 11,

1 o Jo(Ba) ~17z2T [*™2 [22 (_—17,22
= g [ B [ 7 g 1)
G.Z(an, Z7I1§) + :62 cos 722(2 + T)ﬁZ(Z, znZ,IS)
~ 2l3| In(2)dz B dB (3.69)

and for z,9 < z,,1, the n and m modes in Region I,

1 © Jo(Ba . _ - =
Zmn = e J _52_) 1227 Fy(zm1, 2m 15) Ga(2n1s 2n2, I5) B2 dB - (3.70)

and for mode n in Region Il and mode m in Region I,

_ 1 [ Jo(Ba)
T 2rw o Dy

Zmn

I:ﬂl(zm;,z.mz,ITSn)C"z(an,znz,If)ﬂ3 dg. (3.711)

For mode n in Region I and mode m in Region I1,

1 oo Jo(Ba)

= onw Jo Dy Fl(znl,znz,ff)éz(zml,zmg,I;";L)ﬁsdﬂ (3.72)

Zmn

and for both mode n and mode m in Region I with 2,9 < z,,

1 o Jo(Ba) - ~
Zmn = Irweq \/0 'Yzl(DIli Fl(znl’zn2,Ig)Gl(‘zml,szaIgz)ﬁs dg (3-73)

and for z,,] = 251 and 2,2 = zp2, both modes n and m in Region I,

1 oo Jo(ﬂa) Zm?2 9 _ - s
Z = / ]"yzlzG ,I
" 2rweg JO Y21 DM Jom (ﬂ ¢ G1(znts 2, 137)

+ ﬂ2 [52721 cosv,9T cosy,12z — €Y,25in 7,27 sin 'Yzlz]

Fi(z,201,I5) — 77210 I3 (2)) I5(2) dz B dB (3.74)

and for z,9 < z,1, both modes n and m in Region I,

1 o Jy(Ba) - -
Lmn = e /(; ‘Yzl(-D}I; Gl(znlazn%IS)Fl(zmlasz’IgL)ﬂs dg. (375)

The impedance matrix elements of Equations (3.68) - (3.75) can also describe

the mutual impedance between two filamentary vertical currents. If the distance
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between the two filamentary currents is pg, replacing the radius a with py in the
preceding impedance matrix element expressions will define the impedance matrix

element expressions for the mutual impedance.

3.5 Evaluation for the Voltage Vector

The wire will be excited by the so-called delta gap generator [19] at z = —T'.
Using this model, the incident electric field of a Vj volt delta gép generator is given
by

E' = iVpé(z + T). (3.76)

Substituting Equation (3.76) into Equation (3.13) results in the expression for the

voltage vector elements.

Vi = VoIS (-T) (3.77)

Equation (3.77) shows that V;;, will be nonzero only if the weighting function I3

is nonzero at z = —T.

3.6 Expansion and Weighting Functions

Now that the general equations of the impedance matrix and voltage vector
elements are defined, the expansion functions for I;f and the weighting functions
for I;?l will be defined. The wire will be broken into N segments called monopoles.
Figure 14a shows a vertical wire divided into four segments. There will be N
modes on the wire, all but one consisting of two monopoles to form a dipole.
The monopole directly over the ground plane is one mode since its image in the
ground plane makes it an equivalent dipole. Figure 14b shows the dipole modes
formed by the four monopole segments on the wire. The functions F' and G will

be evaluated for each region using an arbitrary monopole. The expressions for the
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electric field at a point between the endpoints of a monopole and the impedance
matrix elements for overlapping monopoles will be evaluated.

The vertical wire is broken into a N segments. Figure 14a shows a vertical
wire on a dielectric coated ground plane broken into four segments. These segments
have a piecewise sinusoidal function associated with them and are referred to as

monopoles. The piecewise sinusoidal function is described by

sinkgy(z9—2
Tﬁdéd_&l for 21 <2< 29

i(z) = (3.78)
0 elsewhere
or
sinky{z—z
——‘L(—A—l) for z1 < 2 < 29
is(2) = Sn g 82 (3.79)
0 elsewhere
where
kg for Region I
kg = 0 8 (3.80)
ko for Region II
Az = z9— 21 (3.81)
kgAz < % (3.82)

The F and G functions shown in the integrands of Equations (3.56), (3.58),
(3.59), (3.62), (3.63), and (3.65) are obtained for the monopoles of Equations (3.78)

and (3.79) between points z) and zy. For the ¢; function,

~ 1

F = A einrais (n()e_nﬂz2 — [—17218in kgAz + Ko cos K Az] e””ﬂzl) (3.83)
0

- 1

S (€272 cos 7z2T [k (cos 72122 — cos 7,12) cos kA z)

+  4,18in7;121 sin kgAz|

+  €07z28in 7,27 [kg (siny,122 — siny,121 cos koA z)
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a) A vertical wire throﬁgh a gfouhded dielectric substrate broken into four seg-

ments.

b) The piecewise sinusoidal functions on each segment to construct the MM modes.

Figure 14: An example of a MM modal model for a vertical wire through a
grounded dielectric substrate.
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B =
+
+
Gy =
+

B2sin kg Az
7729 Sin K9 Aze 712271

B2 sin koA z
7,9 sin k9 Az siny,9(z1 + T')) (3.86)

Y21 €08 Y121 sin KgAz]) (3.84)

1 (nz [e—nzzzz — cos nzAzgﬂzm]

X p [k (cosyza(20 + T) — coskaAz cosyz9(z1 + T'))

Y29 8in ko Az siny,9(2z1 + T))) (3.85)

1
(kg [cosvz9(z2 + T) — cos kg Az cosy,9(z1 + T'))

and for the i3 segment function,

1 - . -
T anmids (K,Oe 2121 — 39,1 sin kgAz + kg cos KgAz] e ]72122) (3.87)
sin kg Az . .
1
YoV (2721 cos v,2T [k (cosv,121 — cosy,122 cos kgAz)

Y21 81N Y5129 sin kg Az]
€07z2 sin Y27 [Kkg (siny;121 — siny;129 cos koAz)

Y21 €08 Y5122 sin kg Az]) (3.88)
1
B2sinkgAz
7729 sin kg A ze 172272

(K,z [8_172221 — COS K/zAze_ﬂ’zZzZ]

X um (k2 (cosyz2(z1 + T) — cos KAz cosy,9(z9 + T'))
v,2 sin kg Az siny,9(z2 + T)|) (3.89)
1

m (k2 [cosyz2(z1 + T') — cos KAz cosy,9(z2 + T')]

Y22 sin kg Az siny,za(zo + T)) . ~(3.90)

When a dipole is constructed from two monopoles, some terms in the F and G

will cancel. These terms are due to the discontinuous current in the monopole. The

first step for identifying terms that cancel is to determine the Z directed electric

field of a dipole. For this step the terms that cancel are called charge terms, since
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the physical representation is a charge at the end of the monopole where the current
is non zero. The integrand of the spectral integral for the E, field of a Z directed
monopole consists of terms that have a ﬂ"% dependance and a 3 4 dependance.
When two monopoles are combined to form a dipole, all 8 $ dependent terms are
charge terms and cancel regardless of the position of the monopoles or the field
point. Without removing the charge terms, the integrals of the monopole are non
convergent. All of the charge terms are products with either ;yzl and sinkgAz in
them for Region I or 4,9 and sin k3Az in them for Region I1. As an example, for
Fy of the i1 function, the charge term is —jv,1 sin kgAze™721%1 when F| is in the
integral equation for the # directed electric field.

The last step in identifying terms that cancel requires the determination of
the dipole to dipole impedance matrix element integral expressions. The terms
that cancel from these expressions are of similar algebraic form as charge terms,
and are called current discontinuity terms. Although the integrals will converge
with the current discontinuity terms, removing them can decrease the convergence
time of the numerical integration. The identification of the current discontinu-
ity terms involves examining all possible dipole to dipole configurations. These
configurations are dependent upon the z location of the monopoles.

In Equations (3.57) and (3.64), the F and & are functions of the z component
of the field point. Evaluating F and G for the piecewise sinusoidal expansion
function and expanding the part of the integrands in Equations (3.57) and (3.64)
which are a function of z, the integrands can be simplified. For (3.57), the part

of the integrand that contains the functions of z is

ﬂ2 (e'-]‘YzzZ + Xppcosy,9(z + T)) éz(znl, z, I;?) (3.91)

+8% cosv2a(z + T)Fa(2, 2n2, I3 ) — 172205
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Letting I,‘f = 11, evaluating F' and G, and simplifying the result, Equation (3.91)
becomes

m (6—17222 [Yz2 sin¥,9(zny + T') — k9 cos¥,2(2n1 + T') cos kg Az]

cos sa(z + T) [wae™ 75852 4 X g (s cos paa(znz + T) - (3)

+722 8i07,9(201 + T) sin k9 Az — K9 €08 ¥,9(251 + T') cos kA z)])
Doing the same with I = i3, Equation (3.91) becomes

g};;,;l;zg; (e”’mz (k2 cos ¥z2(2n1 + T')] + cos yz2(z + T') [(— 7722 sin k2 Az

—K9 cos Ko Az) e 122202 + X pr (—v,98in7,9(2n2 + T) sin kg Az

—K9 €05 Y,9(2n2 + T') cos kg Az + kg cos ¥,9(251 + T'))])
(3.93)

For Equation (3.64), the part of the integrand which contains functions of z is

ﬂzeanﬂzél(znl’ z,I;f) + ﬂ2 [€9721 cos v,2T cos v, 2

- (3.94)
—€0722 sin ;27T siny;1 2] Fi(z, zn27Ir§) - ]721D1MI;§
Letting I;? = 17 and evaluating, Equation (3.94) becomes
EﬁmlTA_z (6_37212 [€2721 cos 59T (— K cOS¥,1 251 cOs KgA 2z
+721 8072121 sin kgAz) — €9yz2 5inv,2T (—kg siny;12p] cos KgAz (3.95)

—721 €08 Yz12n1 Sin Ko Az)] + [€27,1 o8 Y,1 2
— 0722 5iny;12] Ko ~Ie17n2)
Letting I;f = 19, Equation (3.94) becomes

1 _ . .
PV (noe T1212 [€97,1 €05 72T €08 ¥;12n1 — €0Y;2 8inY,2T sin Y, 21

— (€921 €08 ¥,0T cO8¥,12 — €07Yz2 sin 9T sin vy, 2] [noe_ﬂzlznl’ cos KgAz -

+7vz1€ 121%n2 sin K,OAz] )
(3.96)

Note that the charge terms in the above expressions are the terms that contain

7,1 and sin kgAz or or ;9 and sin k9Az.
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By using Equations (3.92) - (3.93) in Equation (3.57) and applying this result
to Equation (3.12), the integral expression for an impedance matrix element of
overlapping piecewise sinusoidal monopoles with expansion mode I;f and weighting
mode I,‘% can be written. For the monopoles in Region II and with I;f:il,

1 o Jo(Ba) . .T (% :
Zyn = 27‘_“’62/0‘ 'yzzsinngAze I7z2 (Fﬂ(zml’sz,Iri)[7z251n722(zn1+T)

— K9 c087;9(zn1 + T) coskpAz] + G’2(zm1, zmz,[rﬁ) [@26—1%227;2

+ X (w2 cosv22(2zn2 + T) + 722 8in 129(2n1 + T) sinkgAz

K2 cos ¥,9(zn1 + T') cos ko Az)]) Bdp. (3.97)

For the monopoles in Region I with I;f:iz,

Zmn

Lo _dolBa) ot (; s
- Fi s 2m2, I T
27rw62/0 N2a sin ngAze ( O(Zml Zm2 m)[ng COS‘yzz(znz-}- )]

+ ég(zml, Zm9, I,‘?;) [( —77225in KAz — K3 cos kgAz) e IT22%n2
+ Xum(r2c0s7:2(2n1 + T) — v225in7,2(2n2 + T)sinkg Az

—  Kpcos7;9(zn2 + T) cos ko A2)]) Bdf (3.98)

where
Fo(z1,29,1) = /m 2 =71:2%(2) da. (3.99)
1
Note that Fp is the same as F| with v, repla.ce;d by ~;2. For a pieceWise si-
nusoidal monopole, the integral in Equation (3.99) can be obtained from Equa-
tions (3.83) and (3.87) by replacing v, by 7,2 and kg by k2. Using Equations (3.64)
and (3.95) - (3.96) the impedance matrix element for overlapping monopolesin Re-

gion I becomes, with I;§=i1,

Zmn (l€0722 cos 22T (721 sin vz12n1 sin kgAz

_ 1 /°° Jo(Ba)
0

2Twey 721 8sinkpAz
—  K(COSYz]12n1 €os KgAz) + €Y,2sinv,9T (kg siny;1 2,1 cos KgAz

+ 721 C€059;12p1 Sin "50A2)] Fl(zmlasza Irﬁ)
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+ K0G1(2m1s 2m2, I5)e ™ 151702) B dB. (3.100)

For the monopoles in Region I with I;?:iz,

1 o  Jy(Ba) >
Zmn = Imweg /0 7,1 5in kgD 2 (Fl(zml, Zm2, I‘;?L)KO [60722 cos 7,21 cos v;12n1
—  €gvz28iny, 9T siny,1201] + él(zml, Zm3, I,‘i) [noe—nllzﬂz cos kpAz
+  Jyg1e 212 sin K,()AZ]) Bdg. (3.101)

3.7 Numerical Difficulties

i The integrand for the Zy,, integrals are singular when Dys equals zero. The
i Dy singularities is due to the TM surface waves that exist on the dielectric coated
ground plane. As the frequency increases, the number of surface wave poles can
increase. For a lossless dielectric, these poles lie right on the Re(x) axis between
Kk(, the propagation constant of Region I (in this problem, free space), and &y, the
propagation constant of Region II. When the dielectric is lossy, the poles move
into the fourth quadrant, but for low loss dielectrics, they are very close to the
Re(x) axis. Figure 10 in Subsection 2.9.3 shows a map of the x plane near the

Re(k) axis, including a staggered contour which avoids the surface wave poles.
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CHAPTER IV

NUMERICAL RESULTS

4.1 Introduction

This chapter compares calculated and measured input impedance and radar
cross section (RCS) of unloaded and loaded rectangular patch microstrip anten-
nas. The mutual impedance of vertical wires in a grounded dielectric substrate is
compared to previously calculated data [21]. The first section will compare calcu-
lations to a compact range measurement of the RCS of a rectangular patch on a
grounded dielectric substrate. A calculation will be made for input impedance of
this patch when corner fed in order to show the modal relationship between RCS
peaks and input impedance resonances. The patch will then be loaded near the
corner with a 50 ohm load. The RCS measurement and calculation for the loaded
microstrip patch will be compared. The next section will compare the calcula-
tion to the measurement for the input impedance of a microstrip antenna. This
will include a wide band comparison and near resonance narrow band compar-
isons. The antenna will be loaded with a 50 ohm load near the corner and the
input impedance calculation and measurement compared. Next, the calculation
of the mutual impedance between two vertical thin wires imbedded in a grounded

dielectric substrate will be compared to previously calculated data [21].
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2.6

- — > X

«3,66 cm

Figure 15: The rectangular microstrip antenna used for RCS calculation and
measurement.

4.2 Plane Wave Scattering Results

This section will compare the MM computation for the radar cross section
(RCS) of a microstrip patch to measurement. Figure 15 shows the geometry of the
microstrip patch used for the unloaded RCS data. Figure 16 shows the geometry
of the same patch with location of the vertical filament of current used for an input
impedance calculation. Figure 17 shows the same patch used for loaded RCS data.
The patch is loaded with 50 ohms for a comparison of calculated and measured
RCS data. The measured patch was loaded through a coaxial feed.

The patch has dimensions of 2H = 3.66 cm and 2W = 2.60 cm. The substrate
has thickness T' = 0.158 cm, relative permittivity ¢, = 2.17, and a loss tangent of
0.001. The incident plane wave has an angle of incidence of (6;,¢;) = (60°,45°)
and its electric field is § polarized. Figure 18 shows the RCS of the patch from
2 to 10 GHz. Figures 19 and 20 show the calculated real and imaginary parts of

the input impedance of this patch over the same frequency range when excited by
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2.60 cm L o »x

«3.66 cm

(X, ¥e) =(1.67 cm,1.14 cm)

Figure 16: The rectangular microstrip antenna of Figure 15 with a feed port for
input impedance calculation.
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«3.66 cm

y

(%, ,¥.)=(1.33 cm,0.80 cm)

Figure 17: The rectangular microstrip antenna of Figure 15 loaded for RCS
calculation and measurement.
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a vertical current located at (zf,yf)=(1.60 cm,1.10 cm), which is very close to a
corner of the patch. Figure 21 compares the wideband RCS of the same patch
when loaded by 50 ohms at (zf,yr)=(1.33 ¢m,0.80 cm).

The MM computations of Figures 18 - 21 were made with Af, = 400 MHz
(the frequency interval for impedance matrix and wire voltage vector computation)
and Af, = 5 MHz (the frequency interval for the MM solution) [14]. The solid
curves are the calculated data with the dots on Figure 18 representing the points
where the impedance matrix has been calculated. The number of modes used to
calculate the data of Figures 18 - 20 were 17 for the frequency range of 2 to 6 GHz
and 31 from 6 to 10 GHz. Note that the changing of the number of modes causes
a discontinuity at 6 GHZ for some of the calculated data. To test for convergence,
the MM solution was run for 84 modes. The data was virtually the same. The
total CPU time to calculate the data in Figure 18 was about 27 minutes on a VAX
11/780. The computation of the data in Figures 19 - 20 took about 30 minutes
on a VAX 8550. For Figure 21, 4 modes were used to calculate the curve from 2
to 5 GHz, 12 modes from 5 to 7.5 GHz, and 24 modes from 7.5 GHz to 10 GHz.
Discontinuities in the calculated data at 5 GHz and 7.5 GHz are due to changing
the number of modes. The total CPU time to compute the data of Figure 21 was
about 30 minutes on a VAX 8550.

Comparing Figures 18 - 20 shows that the same modes can be excited by both
sources. The edge feed location was chosen to excite all modes in the displayed
frequency range. Some of the peaks in the RCS and resonances in the input
impedance are caused by a resonance of a single patch mode, others are caused by
the mutual coupling between patch modes. This will be analyzed in more detail

in Section 4.3.
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Figure 18: A comparison of the computed and measured theta polarized RCS of
a rectangular patch on a grounded dielectric substrate.
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Figure 19: A calculation of the real part of the input impedance for the
microstrip antenna of Figure 16.
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Figure 20: A calculation of the imaginary part of the input impedance for the
microstrip antenna of Figure 16.
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Figure 21: A comparison of the computed and measured theta polarized RCS of
a loaded rectangular patch on a grounded dielectric substrate.
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4.3 Input Impedance Results

This section will compare the calculated input impedance of a microstrip an-
tenna excited by a filament of uniform current to the input impedance of a coaxially
fed microstrip antenna. The measured antenna is loaded through a coaxial feed.
Note that the current filament is not a model for the coaxial feed since it does
not account for the aperture in the ground plane and the current on the outer
conductor of the coax. Figure 22 shows the geometry of the unloaded microstrip
antenna used to generate Figures 25 to 31. Figure 23 shows the geometry of the
edge loaded microstrip antenna used to generate Figures 32 and 33. Figure 24
shows the geometry of the corner loaded microstrip antenna used to generate Fig-
ures 34 and 35. The thickness of the substrate was measured to be 0.088 cm.
The loaded antenna had a load impedance of 50 ohms. The relative permittivity
and loss tangent, as supplied with the substrate, are 2.17 and 0.0015 respectively.
Referring to Figure 5a, the feed is located at (zf,ys) = (0.85 ¢m,1.22 cm). Fig-
ure 25 shows the wide band input resistance and Figure 26 shows the wide band
input reactance of this microstrip antenna. Figures 27 - 31 show the calculated
and measured narrow band input impedance plotted on a Smith Chart for each
resonance between 1 and 7 GHz. Figure 34 shows loaded input impedance from
1 to 4 GHz with the load located at (x,yr)=(1.53 cm,1.1 cm). Figure 35 shows
the loaded input reactance.

For the calculated data of Figures 25 and 26, A f. was chosen to be 400 MHz
and A f, was chosen to be 5 MHz. Twelve modes were used in the MM solution to
compute the curve between 1 and 3.5 GHz, 24 modes were used for the calculation
between 3.5 and 6.4 GHz, and 50 modes were used for the calculation of the curve

between 6.4 and 8.0 GHz. The convergence of this data was tested by using 24
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Figure 22: The rectangular microstrip antenna used for input impedance
calculation and measurement.
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Figure 23: The rectangular microstrip antenna of Figure 22 loaded at the edge
for input impedance calculation and measurement.
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Figure 24: The rectangular microstrip antenna of Figure 22 loaded at the corner
for input impedance calculation and measurement.

modes in the range from 1 to 3.5 GHz, using 32 modes from 3.5 to 6.4 GHz and
using 72 modes from 6.4 to 8.0 GHz. The curves were virtually the same after the
increase in modes. The total CPU time needed to generate the calculated data of
Figures 25 and 26 was about 37 minutes on a VAX 8550.

For the calculated narrow band data of Figures 27 - 31, Af. was chosen to

be 200 MHz and Af, was chosen to be 1 MHz. The number of modes used to
compute the data of Figures 27 and 28 was 4. For Figure 29, 12 modes were used,
for Figure 30, 32 modes were used and for Figure 31, 72 modes were used. The dots
on the calculated and measured curves represent the measured frequency closest
to resonance, and the frequencies 1% and 2% above and below the closest resonant
frequency.

The calculation for loaded input impedance of Figures 34 and 35 was made
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Figure 25: A comparison of the computed and measured real part of the input
impedance for a microstrip antenna.
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Figure 26: A comparison of the computed and measured imaginary part of the
input impedance for a microstrip antenna.
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€r=2.17 tand=0.0015 T=0.08779cm

x,=0.85cm y =1.22cm
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Figure 27: A comparison of the computed and measured input impedance around
first resonance plotted on a Smith Chart.
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€r=2.17 tand=0.0015 T=0.08779cm
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Figure 28: A comparison of the computed and measured input impedance around
second resonance plotted on a Smith Chart.
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€ =2.17 tan6=0.0015 T=0.08779cm
x ~0.85cm y =1.22cm

——— —~—— MEASURED
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Figure 29: A comparison of the computed and measured input impedance around
third resonance plotted on a Smith Chart.
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Figure 30: A comparison of the computed and measured input impedance around
fourth resonance plotted on a Smith Chart.

73



2H=3.4cm 2W=5.0cm
€_=2.17 tan6=0.0015 T=0.08779cm
xf=0.850m yf=1.220m

— ———— MEASURED
_______ CALCULATED

Figure 31: A comparison of the computed and measured input impedance around
fifth resonance plotted on a Smith Chart.
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Figure 32: A comparison of the computed and measured real part of the input

impedance for an edge loaded microstrip antenna.
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Figure 33: A comparison of the computed and measured imaginary part of the
input 1mpedance for an edge loaded microstrip antenna.
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Figure 34: A comparison of the computed and measured real part of the input
impedance for a corner loaded microstrip antenna.
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Figure 36: A comparison of the measured real part of the input impedance for an
unloaded and corner shorted microstrip antenna.
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Figure 37: A comparison of the measured imaginary part of the input impedance
for an unloaded and corner shorted microstrip antenna.
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Figure 38: A comparison of the computed and measured real part of the input
impedance for a corner shorted microstrip antenna.
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with Af. = 400 MHz and Af; = 5§ MHz. The total number of modes used was 4.
The CPU time require to generate this data on a VAX 8550 was about 4 minutes.

Figures 36 and 37 show a comparison of input impedance for the measured
unloaded and shorted microstrip antenna. The geometry of this antenna is shown
in Figure 24 where the load port is now a vertical wire from the patch to the
ground plane. One might expect a short near the corner to eliminate resonances,
particularly the first three since they were greatly reduced by the impedance load.
Figures 36 and 37 clearly show that this is not the case. Figures 38 and 39 show
a comparison of calculated input impedance and measured input impedance for
the shorted microstrip antenna. The calculation was made using 4 modes from
1.5 GHz to 2.5 GHz, 12 modes from 2.5 GHz to 4.5 GHz, 17 modes from 4.5 GHz
to 6.2 GHz, and 32 modes from 6.2 GHz to 7.5 GHz.

The calculated and measured data shown are close in resonant frequency but
usually differ in magnitude. This can be accounted for by the following. First, the
excitation for the calculation is not a model for a coaxial feed. Second, the vertical
filament of current excitation does not include an attachment mode between the
filament and the patch. Third, the microstrip antenna has very high Q resonances
and any loss not modeled in the MM solution could result in lower magnitudes for

the measurement. When looking at the calculated results, particularly the input
reactance data, the discontinuities in the curves are the result of adding more
modes to the MM solution. The higher order modes account for the inductive
shift of the data as the frequency goes higher.

It is interesting to examine the relationship between the impedance matrix and
the input impedance. One might expect an input impedance resonance to directly
correlate with a resonance of a particular mode or modes in the impedance matrix.

This is the case for three of the five resonances shown in Figures 27 - 31. The other
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two are caused by the mutual coupling between modes.

For Figure 27, the most strongly excited mode is the 1 0 § directed mode and it
is resonant. The most strongly excited and resonant mode for Figure 28 is the 1 0 %
directed mode. The resonance shown in Figure 30 has the 3 0 § directed mode most
strongly excited and resonant. This is no surprise since it is two octaves above the
resonance caused by the 1 0 ¥ directed mode. The resonance shown in Figure 29
does not correspond to a resonant mode. The most strongly excited mode is the
1 1 % directed mode. By analyzing the input impedance where two modes were
used for calculating the impedance matrix, it was found that the 1 1 % directed and
11 § directed modes were needed to create an input impedance resonance at that
frequency. Neither of these modes were near resonance. Similarly, for Figure 31,
there is no resonant mode in the impedance matrix. The most excited mode is the
3 1 ¥ directed mode. The modes that are required to show this resonance in the
MM computation were not determined since a large number of modes were needed
to generate it for Figures 25, 26, and 31. This resonance was most likely caused by

the interaction of the 3 1 ¥ directed mode and several other higher order modes.

4.4 Mutual Impedance Between Vertical Thin Wires in a Grounded
Dielectric Substrate

The mutual impedance calculation with respect to their separation for two
vertical thin wires of equal length inside the dielectric region is compared to previ-
ously calculated data [21]. The separation and dimensions have all been normalized
to the free space wavelength at the operating frequency. The thickness of the sub-
strate is 0.4152)¢. The dielectric constant of the substrate is 2.45 and the substrate
is considered lossless. The wires extend from the ground plane at z = —0.4152)

to z = —0.2636)¢ and have a radius of 0.001Ag. The separation of the wires is
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varied from 0.03)¢ to 1.95)¢. For the published curve, the excitation was a mag-
netic frill current around the aperture of the coax. Figures 41 and 42 show that
the so called delta gap generator yields virtually the same curves for the real and
imaginary parts of the mutual impedance. The geometry of this calculation is
shown in Figure 40.

For the MM computation, the wires were broken into three equal length seg-
ments. This corresponds to three dipole modes on the wires. The data was com-
puted at intervals of 0.01)\ separation. The numeric integration had a maximum
limit on the x axis of 200xg but the actual maximum value of x occurred when
the integration converges to within .2%. As the wires moved further apart, the
maximum value of x for convergence decreases but the density of the integration
points must increase since the Jy Bessel function in the impedance matrix integrals
oscillate more rapidly with respect to x as the separation s increases. The total
CPU time to compute the data in Figures 41 and 42 was about 9 minutes on a
VAX 8550.

The mutual impedance is defined from the two port problem. The excitation

ports are at the base of each wire at z = —0.4152)¢. The two port linear equation
is written as
Zn Zyp | (L) (N @1)
2y Zp || I V2
where Z1; and Zjp are the self impedances of wire 1 and wire 2 respectively, Zy2
and Z9; are the desired mutual impedance, I;, V) are the current, voltage at port
1, respectively, and I3, V5 are the current, voltage at port 2, respectively. The two
port impedance matrix is developed by solving the MM matrix equations first with

the excitation at port 1 and then with the excitation at port 2. When the MM

matrix equations are solved with the excitation at port 1, the currents at port 1
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L=0.1516Mx,
T=0.4152X,

Figure 40: Two thin wires imbedded in the dielectric of a grounded dielectric
substrate. The wires have three dipole MM modes on them.
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and port 2 can be determined. Dividing these currents by the voltage exciting port
1, the Y7; and Y3, elements of the two port admittance matrix are determined.
Similarly, the excitation at port 2 will define the Yj3 and Y35 elements of the

two port admittance matrix. By inverting this admittance matrix, the two port

impedance matrix is obtained.

Figure 43 was constructed to illustrate the effect of the dielectric substrate
on the mutual impedance. The dielectric substrate was repiaced by free space
for the same geometry and the mutual impedance was computed over a wider
range of separation. The solid curve is the mutual impedance for the two wires
imbedded in the grounded dielectric substrate and the dashed curve is the free
space mutual impedance. The mutual impedance magnitude falls off as roughly %
when the the wires are in free space. This is as expected since the magnitude of the
mutual impedance is linearly proportional to the electric field and the electric field
decreases as % in free space. When the dielectric is present, there is substantially

more coupling between the two wires as the separation increases. The is due to

the TM surface waves on the dielectric.
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Figure 41: A comparison of present calculation to published data [21] for the real
part of the mutual impedance between two thin wires imbedded in a grounded
dielectric substrate.
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Figure 43: A comparison of the magnitude of the mutual impedance of Figure 40
and the mutual impedance of the same geometry where the dielectric substrate is
replaced by free space.
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CHAPTER V

SUMMARY

This report has described an integral equation and MM solutions to the prob-
lems of scattering and radiation from an unloaded and loaded rectangular micro-
strip patch and the self and mutual impedance of vertical thin wires protruding
through a grounded dielectric substrate.

For the rectangulaf microétrib patch, an integral equation was developed for
unknown surface currents on the patch. The MM was applied to represent this
integral equation as a system of linear equations. A crucial part of the solution
was the integral expressions for the impedance matrix elements. The integrands
in these expressions were analyzed for even-odd symmetries in order to reduce
the time of numeric integration. The voltage vector integral expressions for a
uniform vertical current were also analyzed for even-odd symmetries to reduce the
time required for their computation. The far field of each mode on the patch was
expanded asymptotically so that the voltage vector for an incident plane wave
and the scattered or radiated far field could be expressed analytically. Coaxially
loading of the patch was modeled by a lumped load in a vertical uniform current
filament. The current through the load is determined by a two port analysis.

This report used another technique to improve computational efficiency of the
MM solution. The impedance matrix and voltage vector elements were analyzed

with respect to their frequency dependance. It was found that they varied slowly

91



and smoothly with frequency so an interpolation scheme was employed to generate
impedance matrix and voltage vector data at frequency intervals in between those
that were calculated [16]. The result was the ability to generate wide band data
from relatively few impedance matrix computations. Calculated and measured
data were compared for wide band RCS, wide band input impedance and narrow
band input impedance of both unloaded and loaded microstrip antennas. The
RCS curve showed good agreement between calculation and measurement. It also
showed how the imped‘ance matrix interpolation could discern the narrow band
peaks in the RCS that were not obvious from the points where the MM calculated
the impedance matrix. The data presented for the wide band input impedance
also showed good agreement between calculations and measurement.

For the vertical thin wire in the grounded dielectric substrate, an integral
equation was developed for surface currents on the wire. Since a thin wire has a
diameter much smaller than a wavelength, this surface current was approximated
by a # directed filament of current. The current was obtained by the MM. The
excitation chosen to determine self and mutual impedance was the so called delta
gap generator. The mutual impedance between two thin wires imbedded in the
dielectric is compared to a previous calculation {21] which used a magnetic frill
current for excitation. The close agreement between the calculated and published

curves show that the two types of excitation yield virtually identical results.
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